Exam Advanced Mechanics, Wednesday, January 252017 from 18:30-22:00 in the Aletta Jacobshal 01
 Olaf Scholten, KVI-CART
 5 problems (total of 49 points).

The solution of every problem on a separate piece of paper with name and student number. Some useful formulas are listed at the end.

Problem 1 (14 pnts in total)
Answer: Example 6.3, add fig 6-6

Consider a soap film suspended by two rings of different radii r_{1} and r_{2} with their centers on the y-axis, one at y_{1} and the other at y_{2}. The surface of the rings are parallel to the $x-z$-plane. The soap-film is supposed to be massless.

2 pnts

2 pnts

3 pnts

2 pnts

3 pnts

2 pnts
a. The soap-film is at rest. Present the physics arguments for the condition that should be imposed on the area.
Answer: minimal energy that is due to surface tension thus minimal area
b. Express the surface area of the soap-film in terms of an integral over x and determine $f\left(y, y^{\prime} ; x\right)$.
Answer: $A=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{1+y^{\prime 2}} d x$
c. Express the condition of minimal surface area in terms of an Euler equation for $y(x)$ and show that $x=a \cosh \left(\frac{y-b}{a}\right)$ is a solution.
d. Express the surface area of the soap-film in terms of an integral over y and determine $f\left(x, x^{\prime} ; y\right)$.
Answer: $A=2 \pi \int_{y_{1}}^{y_{2}} y \sqrt{1+x^{\prime 2}} d y$
e. Express the condition of minimal surface area in terms of an Euler equation for $x(y)$ and show that $x=a \cosh \left(\frac{y-b}{a}\right)$ is a solution.
f. Give the equations from which the constants a and b can be determined. DO NOT try to solve these equations!
Answer: $y_{1}=Y\left(x_{1}\right)$ and $y_{2}=Y\left(x_{2}\right)$

Problem 2 (13 pnts in total)
Answer: problem 7.17 or exam of Febr12, Aug10, W08; Skip 3a

A mass M_{1} can move without friction on the vertical x-axis (positive $=$ down). This mass is connected with a (massless) spring (spring constant k and unextended length l_{0}) to a mass M_{2} that can move along the horizontal y-axis without friction. The whole system rotates with a constant angular velocity ω around the x-axis.

1 pnts

2 pnts

2 pnts

2 pnts

4 pnts
f. Consider small oscillations around $y_{0}=0$ keeping x fixed at the stationary value. For what values of ω is $y_{0}=0$ a stable solution?
Answer: first order in y near $y=0$ gives $M_{2} \ddot{y}-M_{2} \omega^{2} y+k\left(x-l_{0}\right) y / x=0$ substituting $x_{0}: M_{2} \omega^{2}=-M_{2} \omega^{2}+k M_{1} g /\left(k\left(M_{1} g / k+l_{0}\right)\right)$ should be positive

Problem 3 (7 pnts in total)
Answer: Example 11.10; Dumbbell
Consider a dumbbell with two equal masses m on a massless bar of length b. The
dumbbell is rotating with an angular frequency ω_{0} around an axis going through the center
of mass and is at an angle α with the massless bar. Assume the bar to be extremely thin
dumbbell is rotating with an angular frequency ω_{0} around an axis going through the center
of mass and is at an angle α with the massless bar. Assume the bar to be extremely thin and the masses point-like.

1 pnts
a. Make a drawing of the geometry.

1 pnts
a. Determine the kinetic energy and the potential energy for the system. Express the Lagrangian of the system using x and y as generalized coordinates.
Answer: $L=\frac{1}{2} M_{1}\left(\dot{x}^{2}+2 g x\right)+\frac{1}{2} M_{2}\left(\dot{y}^{2}+\omega^{2} y^{2}\right)-\frac{1}{2} k\left(\sqrt{x^{2}+y^{2}}-l_{0}\right)^{2}$
b. What are the constant(s) of motion?

Answer: total energy E
c. Give the expression for the conjugated momenta, p_{x} and p_{y}, and the Hamiltonian.

Answer: $p_{x}=M_{1} \dot{x}, p_{y}=M_{2} \dot{y}, H=\frac{1}{2} p_{x}^{2} / M_{1}-M_{1} g x+\frac{1}{2} p_{y}^{2} / M_{2}-M_{2} \omega^{2} y^{2} / 2+$ $\frac{1}{2} k\left(\sqrt{x^{2}+y^{2}}-l_{0}\right)^{2}$
d. Show that the equations of motion can be written as

$$
M_{1} \ddot{x}-M_{1} g+k\left(d-l_{0}\right) x / d=0 \quad ; \quad M_{2} \ddot{y}-M_{2} \omega^{2} y+k\left(d-l_{0}\right) y / d=0
$$

where $d=\sqrt{x^{2}+y^{2}}$.
e. Determine the two (sometimes unstable) equilibrium solutions.

Answer: $d=\sqrt{x^{2}+y^{2}}$, then $-M_{1} g+k\left(d-l_{0}\right) x / d=0, \&$
$-M_{2} y \omega^{2}+k\left(d-l_{0}\right) y / d=0$ giving
$y=0$ with $d=x$ and $M_{1} g=k\left(x-l_{0}\right)$ with $M_{1} g / k+l_{0}=x$
and $M_{2} \omega^{2} d=k\left(d-l_{0}\right),\left(M_{2} \omega^{2}-k\right) d=-k l_{0}$
b. Calculate the inertial tensor in the body-fixed frame.

Answer: $I_{1}=I_{2}=2 m b^{2} / 4=m b^{2} / 2, I_{3}=0$

1 pnts a. Evaluate $\partial_{\mu} x_{\nu}+\partial_{\nu} x_{\mu}$.

2 pnts

3 pnts

1 pnts

3 pnts

3 pnts

3 pnts

4 pnts
c. Calculate \vec{L} in the body-fixed frame.

Answer: $\vec{\omega}=\left(0, \omega_{0} \sin \alpha, \omega_{0} \cos \alpha\right), \vec{L}=\left(0, I_{2} \omega_{0} \sin \alpha, I_{3} \omega_{0} \cos \alpha=0\right)$
d. Calculate the torque \vec{N} that should be applied to the dumbbell to sustain the motion. Answer: $\vec{N}=I \dot{\vec{\omega}}+\vec{\omega} \times \vec{L}=\left(I_{2} \omega_{0}^{2} \sin \alpha \cos \alpha, 0,0\right)$
Problem 4 (5 pnts in total)

Answer: $=g_{\mu \nu}+g_{\mu \nu}=2 g_{\mu \nu}$
b. Evaluate $\partial_{\mu} x_{\nu}-\partial_{\nu} x_{\mu}$.

Answer: $=g_{\mu \nu}-g_{\mu \nu}=0$
c. Evaluate $\partial_{\mu}\left(x^{2} x_{\nu}\right)$.

Answer: $=x_{\nu} \partial_{\mu}\left(x^{2}\right)+x^{2} g_{\mu \nu}=2 x_{\mu} x_{\nu}+x^{2} g_{\mu \nu}$
Problem 5 new (10 pnts in total)
A particle of mass m and charge e moves in a constant magnetic field whose vector potential is given by $A^{0}=0$ and $\vec{A}=\frac{1}{2}(\vec{B} \times \vec{x})$ where \vec{B} is directed along the z-axis.
a. Calculate the components of $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$.

Answer: $A=(0,-B, B, 0) / 2$ and thus $F^{12}=B$, others=zero
b. The equation of motion of the particle for this problem is given by $\frac{d}{d t} \vec{p}=\frac{e}{c} \vec{v} \times \vec{B}$ with $\vec{p}=\gamma m \vec{v}$. Show that the energy of the particle $\epsilon=\sqrt{m^{2} c^{2}+p^{2} c^{2}}$ remains constant during the motion.
Answer: $d \epsilon^{2} / d t=2 p_{x} \dot{p}_{x}+p_{y} \dot{p}_{y}=0$
c. At $t=0$ the particle is at the origin, with velocity $\vec{v}=v_{1} \hat{x}+v_{2} \hat{z}$. Solve the equation of motion of the particle.
Answer: Define $\Omega=e B /(m c \gamma)$ gives $\dot{v}_{x}=\Omega v_{y}, \dot{v}_{y}=-\Omega v_{x}, \dot{v}_{z}=0$, since γ is time independent because the energy is conserved. Thus $v_{x}=v_{1} \cos \Omega t$ to obey boundary condition at $\mathrm{t}=0$ and also $v_{y}=-v_{1} \sin \Omega t$ with $v_{z}=v_{2}$
Possibly useful formulas:
$\vec{F}_{B}=\vec{F}_{\text {inert }}-2 m \vec{\omega} \times \vec{v}_{B}-m \dot{\vec{\omega}} \times \vec{r}_{B}-m \vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{B}\right)$, and $\vec{v}_{I}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{B}$
The response of a damped oscillator $\ddot{x}+2 \beta \dot{x}+\omega_{r}^{2} x=F(t) / m$ to a delta force at $t=0$ is $\frac{1}{\omega_{1} m} e^{-\beta t} \sin \omega_{1} t$ for $t>0$, where $\omega_{1}=\sqrt{\omega_{r}^{2}-\beta^{2}}$.
The 'alternative' form of the Euler equation for $f\left(y, y^{\prime} ; x\right)$ is

$$
\frac{\partial f}{\partial x}-\frac{d}{d x}\left(f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right)
$$

$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta ; \quad \cos (\alpha-\beta)=\sin \alpha \sin \beta+\cos \alpha \cos \beta$
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
$\vec{B}=\vec{\nabla} \times \vec{A} ; \quad \vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial c t}$

Integrals

For $c>0$ we have:

$$
\int e^{c x} d x=\frac{1}{c} e^{c x} ; \quad \int x e^{c x} d x=\frac{c x-1}{c^{2}} e^{c x} ; \quad \int x^{2} e^{c x} d x=\frac{c^{2} x^{2}-2 c x+2}{c^{3}} e^{c x}
$$

