
Exam Advanced Mechanics,
Wednesday, January 25 2017 from 18:30 – 22:00 in the Aletta

Jacobshal 01

Olaf Scholten, KVI-CART

5 problems (total of 49 points).
The solution of every problem on a separate piece of paper with name and student number.

Some useful formulas are listed at the end.

Problem 1 (14 pnts in total)
Answer: Example 6.3, add fig 6-6

Consider a soap film suspended by two rings of different
radii r1 and r2 with their centers on the y-axis, one at
y1 and the other at y2. The surface of the rings are
parallel to the x − z-plane. The soap-film is supposed
to be massless.

x

y

(x1, y1)
dA ds = (dx2 + dy2)

1/2

(x2, y2)

a.2 pnts The soap-film is at rest. Present the physics arguments for the condition that should
be imposed on the area.
Answer: minimal energy that is due to surface tension thus minimal area

b.2 pnts Express the surface area of the soap-film in terms of an integral over x and determine
f(y, y′;x).
Answer: A = 2π

∫ x2
x1
y
√

1 + y′2dx

c.3 pnts Express the condition of minimal surface area in terms of an Euler equation for y(x)
and show that x = a cosh

(
y−b
a

)
is a solution.

d.2 pnts Express the surface area of the soap-film in terms of an integral over y and determine
f(x, x′; y).
Answer: A = 2π

∫ y2
y1
y
√

1 + x′2dy

e.3 pnts Express the condition of minimal surface area in terms of an Euler equation for x(y)
and show that x = a cosh

(
y−b
a

)
is a solution.

f.2 pnts Give the equations from which the constants a and b can be determined. DO NOT try
to solve these equations!
Answer: y1 = Y (x1) and y2 = Y (x2)

Problem 2 (13 pnts in total)
Answer: problem 7.17 or exam of Febr12, Aug10, W08; Skip 3a



A mass M1 can move without friction on the ver-
tical x-axis (positive = down). This mass is connected
with a (massless) spring (spring constant k and unex-
tended length l0) to a mass M2 that can move along
the horizontal y-axis without friction. The whole sys-
tem rotates with a constant angular velocity ω around
the x-axis.
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a.2 pnts Determine the kinetic energy and the potential energy for the system. Express the
Lagrangian of the system using x and y as generalized coordinates.
Answer: L = 1

2M1(ẋ
2 + 2g x) + 1

2M2(ẏ
2 + ω2y2)− 1

2k(
√
x2 + y2 − l0)2

b.1 pnts What are the constant(s) of motion?
Answer: total energy E

c.2 pnts Give the expression for the conjugated momenta, px and py, and the Hamiltonian.
Answer: px = M1ẋ, py = M2ẏ, H = 1

2p
2
x/M1 − M1g x + 1

2p
2
y/M2 − M2ω

2y2/2 +
1
2k(
√
x2 + y2 − l0)2

d.2 pnts Show that the equations of motion can be written as

M1ẍ−M1g + k(d− l0)x/d = 0 ; M2ÿ −M2ω
2y + k(d− l0)y/d = 0

where d =
√
x2 + y2.

e.2 pnts Determine the two (sometimes unstable) equilibrium solutions.
Answer: d =

√
x2 + y2, then −M1g + k(d− l0)x/d = 0, &

−M2yω
2 + k(d− l0)y/d = 0 giving

y = 0 with d = x and M1g = k(x− l0) with M1g/k + l0 = x
and M2ω

2d = k(d− l0), (M2ω
2 − k)d = −kl0

f.4 pnts Consider small oscillations around y0 = 0 keeping x fixed at the stationary value. For
what values of ω is y0 = 0 a stable solution?
Answer: first order in y near y = 0 gives M2ÿ−M2ω

2y+k(x− l0)y/x = 0 substituting
x0: M2ω

2 = −M2ω
2 + kM1g/(k(M1g/k + l0)) should be positive

Problem 3 (7 pnts in total)
Answer: Example 11.10; Dumbbell

Consider a dumbbell with two equal masses m on a massless bar of length b. The
dumbbell is rotating with an angular frequency ω0 around an axis going through the center
of mass and is at an angle α with the massless bar. Assume the bar to be extremely thin
and the masses point-like.

a.1 pnts Make a drawing of the geometry.

b.1 pnts Calculate the inertial tensor in the body-fixed frame.
Answer: I1 = I2 = 2mb2/4 = mb2/2, I3 = 0
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c.2 pnts Calculate ~L in the body-fixed frame.
Answer: ~ω = (0, ω0 sinα, ω0 cosα), ~L = (0, I2ω0 sinα, I3ω0 cosα = 0)

d.3 pnts Calculate the torque ~N that should be applied to the dumbbell to sustain the motion.
Answer: ~N = I~̇ω + ~ω × ~L = (I2ω

2
0 sinα cosα, 0, 0)

Problem 4 (5 pnts in total)

a.1 pnts Evaluate ∂µxν + ∂νxµ.
Answer: = gµν + gµν = 2gµν

b.1 pnts Evaluate ∂µxν − ∂νxµ.
Answer: = gµν − gµν = 0

c.3 pnts Evaluate ∂µ(x2 xν).
Answer: = xν∂µ(x2) + x2gµν = 2xµxν + x2gµν

Problem 5 new (10 pnts in total)
A particle of mass m and charge e moves in a constant magnetic field whose vector

potential is given by A0 = 0 and ~A = 1
2
( ~B × ~x) where ~B is directed along the z−axis.

a.3 pnts Calculate the components of F µν = ∂µAν − ∂νAµ.
Answer: A = (0,−B,B, 0)/2 and thus F 12 = B, others=zero

b.3 pnts The equation of motion of the particle for this problem is given by d
dt
~p = e

c
~v × ~B with

~p = γm~v. Show that the energy of the particle ε =
√
m2c2 + p2c2 remains constant

during the motion.
Answer: dε2/dt = 2pxṗx + pyṗy = 0

c.4 pnts At t = 0 the particle is at the origin, with velocity ~v = v1x̂ + v2ẑ. Solve the equation
of motion of the particle.
Answer: Define Ω = eB/(mcγ) gives v̇x = Ωvy, v̇y = −Ωvx, v̇z = 0, since γ is time
independent because the energy is conserved. Thus vx = v1 cos Ωt to obey boundary
condition at t=0 and also vy = −v1 sin Ωt with vz = v2

Possibly useful formulas:
~FB = ~Finert − 2m~ω × ~vB −m~̇ω × ~rB −m~ω × (~ω × ~rB) , and ~vI = ~vB + ~ω × ~rB

The response of a damped oscillator ẍ + 2βẋ + ω2
rx = F (t)/m to a delta force at t = 0 is

1
ω1m

e−βt sinω1t for t > 0, where ω1 =
√
ω2
r − β2.

The ’alternative’ form of the Euler equation for f(y, y′;x) is

∂f

∂x
− d

dx

(
f − y′ ∂f

∂y′

)
sin(α− β) = sinα cos β − cosα sin β; cos(α− β) = sinα sin β + cosα cos β

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c
~B = ~∇× ~A; ~E = −~∇φ− ∂ ~A

∂ct

Integrals
For c > 0 we have:∫

ecxdx =
1

c
ecx ;

∫
x ecxdx =

cx− 1

c2
ecx ;

∫
x2ecxdx =

c2x2 − 2cx+ 2

c3
ecx
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